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Considerable effort has been expended in recent years in finding improved spatial
differencing schemes for the neutron and radiation transport equations. Standard criteria
used to select a candidate scheme are its order of spatial convergence for small mesh size and
its positivity in the sense that positive solutions emerge from positive input data. More
recently, it has become clear that truly robust schemes must behave well in diffusing regions
(e.g. have the correct diffusion limits) and must be compatible with an effective iteration
acceleration method {e.g., diffusion synthetic acceleration [DSA]).Z'3 Recently, Morel and
Larsen reported their work on a promising new method called the multiple balance method that
has virtually all the desirable characteristics. The one drawback they report is a lack of
general positivity.4

Here we study a different approach to the prob'em by considering discrete.-:)r'di‘n-mes
approximations to the even-parity transport equations. We analyze three spatial difference
approaches: diamond differencing, cell-edge differencing, and cell-center differencing. For
the case of isotropic scattering and sources, the latter two approaches are shown to be
strictly positive, to be second-order accurate, to be compatible with derived diffusion
svnthetic acceleration methods, and to possess the necessary diffusion limits. Unlike
previovs work with the even-parity equation, we do not use Finite elements or variational

principles. I
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Considering slab geometry with isotropic sources and scattering, the even-parity discrete-

ordinates equations are

Wt d (ldi‘m)+ o(x) x_ (x) = & (x) §(x) + Qx) = S(x) M
™ dx \o dx
m=1,2, .., M/2
where x_ is the even-parity flux :and is even in angle and the scalar flux is given
by
1 1 M/2
$(x) =4 [dp W(x.p) = ['du x(x.p) & 3 w x_(x) (2)

m=1}

The derivation of Eq. (1), presented elsewhere,l

involves straightforward algebra per-
formed on the first-order transport equation for positive and negative directions.
If one discretizes the first-order transport equation using diamond-differencing, the

even-parity diamond-difference equations can be derived using a procedure ana.ogous to that

used in deriving the analytic equations:
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It is important to note that Eq. (3) is algebraically equivalent to the first-order form of
the dinmond-difference equations,

A second approach to differencing Eq. (1) is to use cell-cdge differencing, analogous to
what one would use with the diffusion equation. This results in a modification of the removal

term:
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A third approach is to use cell-center differencing resulting in
-Zp:‘ ! (&nhl B Xm.) - (xm 1 +a h X = h S (5)
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Clearly, appropriate differenced boundary equations must be used with Egs. (3), (4), and (5).
Considering positivity, it is straightforward to show that the damond-difference

approximation dnes not guarantee a positive solution.l

However, because both Egs. (4) and
(5) form so-called S matrices, they must giv: positive solutions. Further, because their
derivation is completely analogous to familiar derivations of cell-edge and cell-center
diffusion equation differencing, it is clear that the differencing is second-order
accurate.”
Both Egs. (4) and (5) have been analyzed in the thick and intermediate diffusion limits,
and both possess the required diffusion limits. The analyses of the boundary layers for both
cases seem to indicate that the cell-edge differencing approach behaves better than
cell-center differencing when diffusing boundary layers are unresolved.
The DSA equations for Egs. (4) and (5) are derived by simply angularly integrating them.

This results in:
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The symbols used in Eqgs. (6) and (7) are standard.3 Fourier analyses of these iteration
schemes indicate that the acceleration methods are as effective as DSA with diamond
differencing.
A simple problem previously solved to compare DSA approaches was used to compare the three

3 The problem is an 8-cm slab, with a vacuum boundary on the left and reflective

methods.
boundary on the right. Eight equal mesh cells are used, with varying total cross sections and
a secondary ratio 0.98. A distributed source is present in the right four cells. The Table
depicts the number of iterations for 0.0001 pointwise convergence using DSA with the three
schemes and S4 quadrature. As previously reported,3 unaccelerated, the problems require
hundreds of iterations.

It is clear that finite-differenced even-parity discrete-ordinates is a strong candidate

for future use in production computer codes.
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TABLE
NUMBER OF DIFFUSION SYNTHETIC ACCELERATION ITERATIONS

FOR TEST PROBLEM

at\Method Diamond Cell-Edge Cell-Center
Differencing Differencing Differencing
1.0 4 4 3
4.0 6 3 3
6.0 6 3 2
20.0 5 2 2
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